پایان نامه با کلمات کلیدی پیوند دوگانه، دو قطبی، مطالعات آینده

یافت(در محلول(THF.  نوار پرانرژی انتقال *σ-σ ، در 230 نانومتر است. ترانس آزوبنزن مسطح دارای ممان دو قطبی نزدیک به صفر است. ایزومر ترانس را میتوان با تابش به ایزومر سیس غیر مسطح مربوطه تبدیل کرد. در اینجا حلقههای فنیل بنا به دلایل فضایی خارج از سطح پیچ خوردهاند، بنابراین تا حدودی سیستم کانژوگه را از بین بردهاند.  از این رو، جذب در 320 نانومتر را شدیداً کاهش میدهد در حالی که در 450 نانومتر به میزان قابل توجهی افزایش میدهد. علاوه بر این، در ایزومر سیس ممان دو قطبی را از 0 تا 3 دبی افزایش میدهد. پس از تابش با نور UV به ایزومر ترانس، ایزومریزاسیون پیوند دوگانه صورت میگیرد و پیکربندی از ترانس به سیس تغییرمیکند [10].
شکل 2-3 : ایزومریزاسیون سیس-ترانس آزوبنزن
نسبت ایزومرهای سیس و ترانس وابسته به میزان واکنش ایزومریزاسیون مختلف، در شدت نور، در بازده کوانتومی فتوشیمیایی ایزومریزاسیون سیس – ترانس و ترانس – سیس و همچنین ضریب جذب22 از ایزومرهای مربوطه در طول موج تابش است. میزان واکنشهای حرارتی به نوبه خود وابسته به مکانیسم ایزومریزاسیون که میتواند صورت بگیرد با وارونه شدن یکی از نیتروژنهای مرکزی از گروه آزو که منجر میشود به دوباره هیبرید شدن یکی از اتمهای نیتروژن از حالت هیبرید sp2 به حالت هیبرید sp ، و یا از طریق یک مکانیزم چرخش که به شدت مورد علاقه مشتقاتی با ممان دو قطبی قوی است. شکل(2-3) را ببنید. ظاهر این مکانیسمهای متفاوت، به شدت وابسته به قطبیت مولکول و محیط اطراف هستند [10].
شکل 2-4 : شماتیک حالات انتقالات برای ایزومریزاسیون حرارتی سیس-ترانس آزوبنزن
در سال 2008، یوان و همکارانش یک مطالعه دینامیک نیمه کلاسیک برروی فتوایزومریزاسیون ترانس- سیس آزوبنزن انجام دادند [11].
در مطالعه دینامیک شبیهسازی شده، گزارش شد که تشکیل ایزومر سیس به پیروی از حرکت چرخشی در اطراف پیوند N=N است ]11[.
شکل 2-5 : واریانس انرژی (a) و جمعیت الکترونی (b) مربوط به اوربتالهای HOMO و LUMO نسبت به زمان
شکل 2-6 : واریانس زوایای پیچشی CNNC(a) و زوایای پیوندی CNN (b) نسبت به زمان
در سال 1958 زیمرمن23 و همکارانش طیف آزوبنزن را ارائه دادند. همانطور که میتوان در شکل 2-7 دید ، ایزومر ترانس آزوبنزن یک جذب قوی در 318 نانومتر و یک جذب ضعیف در 432 نانومتر را نشان میدهد. ایزومر سیس دارای دو باند جذب است، یک جذب قوی در 260 نانومتر و یک جذب ضعیف در 440 نانومتر است. همپوشانی آشکار در جذب این دو ایزومر وجود دارد [12].
شکل 2-7 : طیف UV/vis آزوبنزن
در سال 2009 سیمپسون24 و همکارانش محاسباتی درباره ایزومریزاسیون و موانع پیچش فنیل با استفاده (DFT) در سطح نظری B3LYP /6-31 + G ** در ترکیبات Aryl-X=Y- Aryl انجام دادند که در آن X,Y = C, N, P میباشد [13].
شکل2-8 : E(E-Z) Δ و موانع چرخش در پیچش پیوند دوگانه X=Y محاسبه شده در سطح نظری **B3LYP/6-31+G
X,Y = C, N, P
سیمپسون و همکارانش دریافتند که ایزومر ترانس دارای انرژی ساختار پایینتر برای هر چهار مولکول مورد مطالعه است، بنابراین پایدارترین ایزومر است. پیکربندی ترانس1و2-دیفنیل دیآزن دارای تقارن C2h است. مولکولهای Aryl-X=Y=Aryl ، حاوی فسفر مسطح نیستند. حلقه فنیل متصل به اتم فسفر بین 30 و 35 درجه برای 1و2-دیفنیل دیفسفن میچرخد. برای ایزومر ترانس- و سیس-1و2-دیفنیل دیآزن مقدار Eبه ترتیب برابر با 15.8 و 48.2 کیلو کالری بر مول است و برای ایزومر ترانس- و سیس- 1و2-دیفنیل دیفسفن مقدار Eبه ترتیب برابر با 5.5 و 38.7 کیلو کالری بر مول است. موانع چرخش در مورد پیوند دوگانه میتواند بوسیله استحکام پیوند π ، تعیین شود.. شکل 2-8 نشان میدهد که ضعیفترین پیوند π در مولکول P = P یافت میشود [13].
میزان ایزومریزاسیون حرارتی برای چند دیفسفن مشابه به صورت زیر مشاهده شده است که :
)Z → E: ∆G‡ ~20 kcal/mol at 0 °C∆ ، H‡ = 5/29 ± 4/1 kcal/mol and ∆S‡ = 38 6± cal/mol K (
آنتروپی فعالسازی نسبتاً بزرگ ممکن است به علت ازدحام فضایی باشد که توسط ایزومریزاسیون، رها میشود [13].
پیکربندی ترانس 1و2-دیفنیل دیآزن دارای تقارن C2h است. مولکولهای حاوی فسفر مسطح نیستند. حلقه فنیل متصل به اتم فسفر بین 30 و 35 درجه برای 1و2-دیفنیل دیفسفن میچرخد. انرژی ساختاری پایین این مولکولها تعادل بین مولکولی بین سیستم π کانژوگه در سراسر مولکول را منعکس میکند که همواره به سوی مسطح بودن مولکولی است، و ممانعت فضایی، پیکربندی غیر مسطح را القا میکند. این ممانعت فضایی به علت زاویه کوچک لیگاند بیشتر تشدید میشود، که در نتیجه اثر کمتر هیبریداسیون sp2  در عناصر سنگین گروه اصلی میباشد. زاویه معادل در 1و2-دیفنیل دیآزن بسیار نزدیک به 120 درجه است. انرژی در 90 τ = ، که در آن حلقه فنیل به پیوند مرکزی X = Y متعامد است، نشان میدهد که کانژوگه در سراسر مولکول و نیز برای مولکول حاوی فسفر کاهش مییابد. در دیفسفن تجربی مشخص شد، که استفاده از گروه بزرگ برای حفاظت از واکنش پذیری پیوند دوگانه منجر میشود به طیف گسترده ای از زاویه پیچش فنیل، که اکثر آنها زوایا بیشتر از 45 درجه دارند. پیکربندی الکترونی یکسان نیتروژن و فسفر نشان میدهد که ایزومریزاسیون در دیفسفن به احتمال زیاد آیینه آزوبنزن است [13].
در سال 2009 پنگ25 و همکارانش برای محاسبه سطوح انرژی پتانسیل با بهینهسازی ترکیب 1و2-دیفنیل دیفسفن، در سطح نظری نسبتاً بالای ((B3LYP/6–31+G(d,p) یک مقاله ارائه دادند. DFT و TDDFT را برای ترکیب 1و2-دیفنیل دیفسفن به همراه مختصات کامل، در زاویای مختلف از پیچش فنیل بکار گرفتند [14]. دیفسفنها به طور معمول دو جذب بزرگ UV/vis نشان میدهند، که هر دو عمدتاً به گروه P=P اختصاص داده میشود.
شکل 2-9 : پارامترهای مهم هندسی ترانس-دیفنیل دیفسفن ((Ph-P=P-Ph در سطح ( B3LYP/6–311+G(2df,2p بهینهسازی شدهاند. مقایسه ساختارهای Mes P=P-Mes* * و Dmp-P=P-Dmp نیز فراهم شده است τ1 زاویه پیچش 3-2-1-1) ) وτ2 زاویه پیچش 3′-2′-1′-1) ) زوایای پیچش فنیل نسبت به پیوند تقریبا مسطحP = P هستند (زاویه پیچش در 2-1-1′-2′ = τPP). Rpp طول پیوند P=P است [14].
در سال 2001 گیلوزو26 وهمکارانش ساختار الکترونی از مشتقات دیفسفن و دیآرسن را بررسی کردند. در جدول2-6 نتایج بعضی پارامترها آمده است [15].
جدول2-6 : محاسبه پارامترهای ساختاری برای دیفسفن و دیآرسن های مختلف در سطح نظری B3LYP/6–311+G(d,p)
استپانیک27 و دیگر همکارانش ساختار و طیف ارتعاشی سیس و ترانس آزوبنزن را در سال 2001 بررسی کردند [16].
جدول2-7 : پارامترهای ساختاری و ممان دوقطبی برای ترانس و سیس آزوبنزن در سطح نظری B3LYP/6–311+G(d,p)
شکل2-10 و جداول 2-8 و2-9 با استفاده از محاسبات کوانتومی آغازین روش CASSCF) ) توسط آماتاتسو28 در سال 2009 ارائه شد [17].
شکل2-10 : شماره گذاری اتمها و نمادهای زاویه پیوند، طول پیوند و زاویه پیچشی برای دیفنیل دیفسفن
جدول2-8 : پارامترهای مهم ساختاری بهینه شده دیفنیل دیفسفن در سطح نظری CASSCF) )
جدول2-9 : پارامترهای مهم ساختاری بهینه شده دیفنیل دیآزن در سطح نظری CASSCF) )
مطالعات خوبی درباره ایزومریزاسیون آزوبنزن توسط وانگ29 و همکارانش در سال 2009 انجام شد. آنها با استفاده از محاسبات مکانیک کوانتومی آغازین روش CASSCF دریافتند که ترانس آزوبنزن با تقارن C2h نسبت به سیس آزوبنزن با تقارن C2 دارای انرژی پایینتری است( 16.2 کیلوکالری بر مول). در جدول 2-10 میتوانید پارامترهای ساختاری برای RE=ER بهینه شده در سطح نظری B3LYP/6-31G(d)) ) را مشاهده کنید [18].
جدول2-10 : پارامترهای ساختاری بهینه شده برای RE=ER محاسبه شده در سطح نظری B3LYP/6-31G(d)) )
شکل زیر هم تصویری از پارامترهای ساختاری آزوبنزن است که در سال 2009 توسط وانگ و همکارانش ارائه شد [18].
شکل2-11 : زاویه و طول پیوند در ترانس و سیس آزوبنزن
در سال 2010 چن30 و سو31 سطوح انرژی پتانسیل واکنش حلقهزایی، مولکولهای گروه 15 Ph-E = E-Ph به 2- بورا فرروسنوفان را با استفاده از نظریه تابعی چگالی (B3LYP/LANL2DZ) مورد مطالعه قرار دادند [19]. پارامترهای هندسی کلیدی Ph-E = E-Ph برای هر دو حالت یکتایی و سه تایی به ترتیب در شکل 2-12 و 2-13 آورده شده است. علاوه بر این، محاسبه خواص فیزیکی مولکول Ph-E = E-Ph برای مقایسه با برخی از دادههای تجربی در جدول 2-11 داده شده است.
شکل 2-12 : پارامترهای ساختاری برای فرم ترانس مولکول Ph-E = E-Ph
شکل 2-13 : پارامترهای ساختاری برای فرم ترانس مولکول Ph-E = E-Ph
توافق خوبی بین نتایج محاسباتی بدست آمده این دانشمندان و دادههای تجربی وجود دارد که نشان دهنده قابل اعتماد بودن روش و نتایج است. نکته مهم اینکه ساختار ترانس همیشه ثابت شده که نسبت به ساختار سیس پایدارتر است [19].
جدول 2-11 : خواص فیریکی از جمله انرژی تفکیک پیوند، انرژی تبدیل ترانس به سیس و مقادیر طول پیوند دوگانه تجربی برای مولکول Ph-E = E-Ph
2-5 نتیجه
آنچنان که مشاهده شد، مطالعات متعدد محاسباتی درباره ترکیبات مورد نظر ما یا مشتقات مختلف دیگر از این ترکیبات گزارش شده است اما هنوز یک تصویر مناسب با استفاده ازروشهای مکانیک کوانتومی آغازین در سطح نظری B3LYP/ Def2-TZVPP و تحلیل NBO که مولکول Ph-E = E-Ph حاوی اتمهای نیتروژن، فسفر، آرسنیک و آنتیموان را بررسی نماید نشان داده نشده است. اطلاعات تجربی در مورد ایزومریزاسیون ترکیبات مورد نظر منتشر شده اما دادههای تجربی یا نظری در مورد اثرات عدم استقرار و برهمکنش دوقطبی-دوقطبی برروی خواص پیکربندی ترکیبات ما منتشر نشده است. بررسی دقیق این پژوهش، درک بهتری از تاثیر اثرات مختلفی همچون اثرات استریوالکترونی، اثرات الکترواستاتیک و اثرات فضایی در تعیین پایداری گونههای مورد نظر بالا، که تاکنون ارائه نشده است، را فراهم میکند. در اینجا، ما یک بررسی کامل برای تعیین پایداری گونههای Ph-E = E-Ph حاوی اتمهای نیتروژن، فسفر، آرسنیک و آنتیموان را گزارش میکنیم. این مطالعه میتواند نشان دهنده اطلاعات بسیار مفیدی باشد که ضمن تایید، گسترش میدهد آنچه را که درباره پایداری مولکولهای موردنظر شناخته شده است و همچنین کمک میکند تا زمینهای برای مطالعات آینده ایجاد شود.
فصل سوم
محاسبات شیمیایی
3-1- مقدمه :
در اواخر قرن هفدهم، ایساک نیوتن موفق شد مکانیک کلاسیک و قوانین حرکت اجسام ماکروسکوپی را کشف کند. در اوایل قرن بیستم فیزیکدان‌ها دریافتند که مکانیک کلاسیک از توجیه صحیح رفتار ذرات خیلی کوچک، نظیر الکترون‌ها و هستۀ اتم‌ها و مولکول‌ها عاجز است و معلوم شد که رفتار چنین ذراتی توسط مجموعه‌ای از قوانین به نام مکانیک کوانتومی توصیف می‌شود [20].
شیمی کوانتومی دانش کاربرد مکانیک کوانتومی در مسایل مربوط به شیمی است. اثر شیمی کوانتومی در تمام شاخه‌های وابسته به شیمی قابل لمس است. مثلاً دانشمندان شیمی فیزیک، مکانیک کوانتومی را به کمک مکانیک آماری در محاسبات مربوط به خواص ترمودینامیکی (مانند آنتروپی و ظرفیت حرارتی گازها)، در تفسیر طیف‌های مولکولی به منظور تأئید تجربی خواص مولکولی (مانند طول‌ها و زوایای پیوندی، گشتاورهای دوقطبی، سدهای مربوط به دوران داخلی، تفاوت‌های انرژی بین

مطلب مشابه :  منابع و ماخذ تحقیقزمان بندی، فعالیت ورزشی، دوران کودکی